Find the domains of f and g.

Find the domain of $f+g, f-g$, and $f \cdot g$.

Find any values of x for which $g(x)=0$.

Find the domain of f / g.

EXAMPLE 3 Given $f(x)=\frac{1}{x}$ and $g(x)=2 x-7$, find the domains of $f+\varepsilon$ $f-g, f \cdot g$, and f / g.
SOLUTION We first find the domain of f and the domain of g :
The domain of f is $\{x \mid x$ is a real number and $x \neq 0\}$. The domain of g is \mathbb{R}.
The domains of $f+g, f-g$, and $f \cdot g$ are the set of all elements common to the domains of f and g. This consists of all real numbers except 0 .

$$
\text { The domain of } \begin{aligned}
f+g & =\text { the domain of } f-g=\text { the domain of } f \cdot g \\
& =\{x \mid x \text { is a real number and } x \neq 0\}
\end{aligned}
$$

Because we cannot divide by 0 , the domain of f / g must also exclude any values of x for which $g(x)$ is 0 . We determine those values by solving $g(x)=0$:

$$
\begin{aligned}
g(x) & =0 \\
2 x-7 & =0 \quad \text { Replacing } g(x) \text { with } 2 x-7 \\
2 x & =7 \\
x & =\frac{7}{2}
\end{aligned}
$$

The domain of f / g is the domain of the sum, the difference, and the product of f and g, found above, excluding $\frac{7}{2}$.

The domain of $f / g=\left\{x \mid x\right.$ is a real number and $x \neq 0$ and $\left.x \neq \frac{7}{2}\right\}$.
Try Exercises 47 and 55.
Division by 0 is not the only condition that can force restrictions on the domain of a function. In Chapter 7, we will examine functions similar to that given by $f(x)=\sqrt{x}$, for which the concern is taking the square root of a negative number.

Concept Reinforcement Make each of the following sentences true by selecting the correct word for each blank.

1. The function $f-g$ is the $\frac{\text { difference }}{\text { sum/difference }}$
of f and g.
2. One way to compute $(f-g)(2)$ is to

$$
\frac{\text { subtract }}{\text { erase/subtract }} g(2) \text { from } f(2)
$$

3. One way to compute $(f-g)(2)$ is to simplify $f(x)-g(x)$ and then $\frac{\text { evaluate }}{\text { the }}$ result for $x=2$. evaluate/substitute
4. The domain of $f+g$ is the set of all values $\frac{\text { common to }}{\text { common to/excluded from }}$ the domains of f and g.
5. The domain of f / g is the set of all values common to the domains of f and g, $\frac{\text { excluding }}{\text { including/excluding }}$ any values
for which $g(x)$ is 0 .
6. The height of $(f+g)(a)$ on a graph is the $\frac{\text { sum }}{\text { product/sum }}$ of the heights of $f(a)$ and $g(a)$.

Let $f(x)=-3 x+1$ and $g(x)=x^{2}+2$. Find each of the following.
7. $f(2)+g(2) \quad 1$
8. $f(-1)+g(-1) \quad 7$
9. $f(5)-g(5)-41$
10. $f(4)-g(4)-29$
11. $f(-1) \cdot g(-1) \quad 12$
12. $f(-2) \cdot g(-2)$
13. $f(-4) / g(-4) \quad \frac{13}{18}$
14. $f(3) / g(3) \quad-\frac{8}{11}$
15. $g(1)-f(1) 5$
17. $(f+g)(x) \quad x^{2}-3 x+3$
16. $g(2) / f(2)-\frac{6}{5}$
19. $(f-g)(x)-x^{2}-3 x-$
20. $(g / f)(x)$

Let $F(x)=x^{2}-2$ and $G(x)=5-x$. Find each of the following.
21. $(F+G)(x) \quad x^{2}-x+3$
22. $(F+G)(a) \quad a^{2}-a+3$
23. $(F+G)(-4) 23$
24. $(F+G)(-5) \quad 33$
25. $(F-G)(3) \quad 5$
27. $(F \cdot G)(-3) \quad 56$
26. $(F-G)(2)-1$
29. $(F-G)(a) a^{2}+a-7$
28. $(F \cdot G)(-4) \quad 126$
31. $(F-G)(x) \quad x^{2}+x-7$
30. $(F / G)(x) \frac{x^{2}-2}{5-x}, x \neq 5$
33. $(F / G)(-2) \frac{2}{7}$
32. $(G-F)(x)$

In 2004, a study comparing high doses of the cholesterollowering drugs Lipitor and Pravachol indicated that patients taking Lipitor were significantly less likely to have heart attacks or require angioplasty or surgery.

In the graph below, $L(t)$ is the percentage of patients on Lipitor (80 mg) and $P(t)$ is the percentage of patients on Pravachol (40 mg) who suffered heart problems or death t years after beginning to take the medication.

Years of follow-up of patients
Source: New England Journal of Medicine
the number of non-Caesarean section births, and $N(t)$ the total number of births in year t.

Source: National Center for Health Statistics
37. Use estimates of $C(2004)$ and $B(2004)$ to estimate $N(2004) . \quad 1.2+2.9=4.1$ million births
38. Use estimates of $C(1985)$ and $B(1985)$ to estimate $N(1985) . \quad 0.8+2.9=3.7$ million births

Often function addition is represented by stacking the individual functions directly on top of each other. The graph below indicates how U.S. municipal solid waste has been managed. The braces indicate the values of the individual functions.

Talking Trash

Source: Environmental Protection Agency
35. Use estimates of $P(2)$ and $L(2)$ to estimate $(P-L)(2) . \quad 4 \%$
36. Use estimates of $P(1)$ and $L(1)$ to estimate $(P-L)(1) . \quad 2 \%$
The graph below shows the number of births in the United States, in millions, from 1970-2004. Here $C(t)$ represents the number of. Caesarean section births, $B(t)$
39. Estimate $(p+r)$ ('05). What does it represent?
40. Estimate $(p+r+b)(' 05)$ What does it represent?
41. Estimate $F($ ' 96$)$. What does it represent?
42. Estimate $F($ ' 06). What does it represent?
43. Estimate $(F-p)(' 04)$. What does it represent?
44. Estimate $(F-l)($ '03). What does it represent?

For each pair of functions f and g, determine the domain of the sum, the difference, and the product of the two functions.

45. $f(x)=x^{2}$,

$$
g(x)=7 x-4
$$

46. $f(x)=5 x-1$,
$g(x)=2 x^{2} \quad \mathbb{R}$
47. $f(x)=\frac{1}{x-3}$,

$$
g(x)=4 x^{3}
$$

$\{x \mid x$ is a real number and $x \neq 3\}$
48. $f(x)=3 x^{2}$,
$g(x)=\frac{1}{x-9}$
$\{x \mid x$ is a real number and $x \neq 9\}$
49. $f(x)=\frac{2}{x}$,
50. $f(x)=x^{3}+1$,
$g(x)=\frac{5}{x}$
$\{x \mid x$ is a real number and $x \neq 0\}$
$g(x)=x^{2}-4$
$\{x \mid x$ is a real number and $x \neq 0\}$
51. $f(x)=x+\frac{2}{x-1}$,
52. $f(x)=9-x^{2}$,
$g(x)=\frac{3}{x-6}+2 x$
$\{x \mid x$ is a real number and $x \neq 1\}$
$\{x \mid x$ is a real number and $x \neq 6\}$
53. $f(x)=\frac{x}{2 x-9}$,
$g(x)=\frac{5}{1-x}$
54. $f(x)=\frac{5}{3-x}$,
$g(x)=\frac{x}{4 x-1} \square$
For each pair of functions f and g, determine the domain of f / g.
55. $f(x)=x^{4}$, $g(x)=x-3$
56. $\begin{aligned} f(x) & =2 x^{3}, \\ g(x) & =5-x\end{aligned}$
$g(x)=5-x$
58. $f(x)=5+x$,
57. $f(x)=3 x-2$, $g(x)=2 x-8$

$$
g(x)=6-2 x
$$

59. $f(x)=\frac{3}{x-4}$,
60. $f(x)=\frac{1}{2-x}$, $g(x)=5-x$

$$
g(x)=7-x
$$

61. $f(x)=\frac{2 x}{x+1}$,
62. $f(x)=\frac{7 x}{x-2}$,
$g(x)=2 x+5$
$g(x)=3 x+7$

TW 71. Between what years did the average American drink more soft drinks than juice, bottled water, and milk combined? Explain how you determined this.

For Exercises 63-70, consider the functions F and G as shown.

63. Determine $(F+G)(5)$ and $(F+G)(7)$. $4 ; 3$
64. Determine $(F \cdot G)(6)$ and $(F \cdot G)(9)$. $0 ; 2$

Q Answers to Exercises 53, 54, 56, 58-62, 67, 69, and 70 are on p. IA-6.
79. The sum of two consecutive integers is 145 .

Let x represent the first integer; $x+(x+1)=145$
$\boldsymbol{\sigma} 0$. The difference between a number and its opposite is 20 . Let n represent the number; $n-(-n)=20$

SYNTHESIS

TN 81. Examine the graphs showing number of calories expended following Example 2 and explain how similar graphs could be drawn to represent the absorption of 200 mg of Advil ${ }^{\circledR}$ taken four times a day.
TNW 82. If $f(x)=c$, where c is some positive constant, describe how the graphs of $y=g(x)$ and $y=(f+g)(x)$ will differ.
83. Find the domain of f / g, if

$$
f(x)=\frac{3 x}{2 x+5} \quad \text { and } \quad g(x)=\frac{x^{4}-1}{3 x+9}
$$

84. Find the domain of F / G, if

$$
F(x)=\frac{1}{x-4} \quad \text { and } \quad G(x)=\frac{x^{2}-4}{x-3}
$$

$\{x \mid x$ is a real number and $x \neq 4$ and $x \neq 3$ and $x \neq 2$ and $x \neq-2\}$
85. Sketch the graph of two functions f and g such that the domain of f / g is

$$
\{x \mid-2 \leq x \leq 3 \text { and } x \neq 1\}
$$

86. Find the domains of $f+g, f-g, f \cdot g$, and f / g, if

$$
f=\{(-2,1),(-1,2),(0,3),(1,4),(2,5)\}
$$

and
$g=\{(-4,4),(-3,3),(-2,4),(-1,0),(0,5),(1,6)\}$.
87. Find the domain of m / n, if

$$
m(x)=3 x \text { for }-1<x<5
$$

and $\quad\left\{x \mid x\right.$ is a real number and $-1<x<5$ and $\left.x \neq \frac{3}{2}\right\}$

$$
n(x)=2 x-3
$$

88. For f and g as defined in Exercise 86, find $(f+g)(-2),(f \cdot g)(0)$, and $(f / g)(1) . \quad 5 ; 15 ; \frac{2}{3}$
89. Write equations for two functions f and g such that the domain of $f+g$ is
$\{x \mid x$ is a real number and $x \neq-2$ and $x \neq 5\}$.
90. Using the window $[-5,5,-1,9]$, graph $y_{1}=5$, $y_{2}=x+2$, and $y_{3}=\sqrt{x}$. Then predict what shape the graphs of $y_{1}+y_{2}, y_{1}+y_{3}$, and $y_{2}+y_{3}$ will take. Use a graph to check each prediction.
Answers to Exercises 83, 85, 86, 89, and 91 are on p. IA-6. .
91. Let $y_{1}=2.5 x+1.5, y_{2}=x-3$, and $y_{3}=y_{1} / y_{2}$. For many calculators, depending on whether the CONNECTED or DOT mode is used, the graph of y_{3} appears as follows.

Use algebra to determine which graph more accurately represents y_{3}.
92. Use the graphs of f and g, shown below, to match each of $(f+g)(x),(f-g)(x),(f \cdot g)(x)$, and $(f / g)(x)$ with its graph.

a) $(f+g)(x)$ IV
b) $(f-g)(x)$
c) $(f \cdot g)(x)$ II
d) $(f / g)(x)$ III

I

III

[^0]
[^0]: - Try Exercise Answers: Section 2.5

 7. 1 17. $x^{2}-3 x+3$
 8. $\{x \mid x$ is a real number and $x \neq 3\}$
 9. $\{x \mid x$ is a real number and $x \neq 3\}$
